منابع مشابه
Higher Lie idempotents
Let T (X) be the tensor bialgebra over an alphabet X. It is a graded connected cocommutative bialgebra, canonically isomorphic to the envelopping bialgebra of the free Lie algebra over X, Lie(X). The subalgebra of its convolution algebra generated by the projections arising from the graduation is also an algebra for the composition of morphisms and is anti-isomorphic as such with the direct sum...
متن کاملLie higher derivations on $B(X)$
Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.
متن کاملLie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملJones-wenzl Idempotents for Rank 2 Simple Lie Algebras
Temperley-Lieb algebras have been generalized to web spaces for rank 2 simple Lie algebras. Using these webs, we find a complete description of the Jones-Wenzl idempotents for the quantum sl(3) and sp(4) by single clasp expansions. We discuss applications of these expansions.
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1999
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.7887